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Two random vortex methods of Runge-Kutta type are presented for solving the two- 
dtmensional Navier-Stokes equattons. We investigate the accuracy of these methods by 
considering the model problem of a rotating flow wtth intitial vorticity concentrated uniformly 
on a disk of finite radius. Functionals of the numerical solution are computed by Monte Carlo 
estimates with efficient variance reduction, and the results are compared to those obtamed 
from Euler’s method. The numerical results show that both of the methods produce errors 
smaller by one power of the time step size than Euler’s method, one seemingly even better 
than the other. These Runge-Kutta methods are derivations of similar schemes proposed by 
us in an earlier time for solving stochastic dtfferentral equations with constant diffusion 
coeffrclents. c’ 1988 Academic Press, Inc 

1. INTRODUCTION 

In this article we present three random vortex methods for the two-dimensional 
Navier-Stokes equations and compare their accuracy in numerical examples. The 
methods that we consider are Euler’s method and two other methods-A and B, 
say-based on the midpoint rule. Methods A and B are derived from similar 
schemes--called A, and B0 here-proposed by us in an earlier time for solving 
stochastic differential equations (SDEs) [9, lo]. Method B, has order 1.5 in the L, 
sense while Method A, was conjectured to have order 2 in a weak sense. Roughly 
speaking, the derivations are due to SDEs’ capability of modeling the physics of 
convection by a drift term and of viscous diffusion by a Wiener process (Brownian 
motion). 

Our model problem is a two-dimensional rotating flow with initial vorticity 
distributed uniformly on a disk of finite radius a( =0.5). The viscosity v( =0.002) is 
chosen within the range of a typical slightly viscous flow. Following [31, 333, we 
compare the methods by estimating two functionals of the flow field which can be 
evaluated exactly. Indeed, as we shall see in Section 2, the flow field is actually a 
functional of the Wiener process. The total time interval r( =4) of the test is about 
the order of the period of rotation of the corresponding inviscid flow. 

There are two main sources of error in the stochastic schemes for estimating the 
functionals: the time discretization and the random sampling. The former produces 
local truncation error at each time step which depends only on the specific scheme 
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used and can be reduced to some extent by decreasing the time step size. The latter 
comes from Monte Carlo estimation of the functionals. The error variance of a 
typical Monte Carlo estimate is usually proportional to l/N so that the sampling 
error often dominates the discretization error, and therefore should be minimized as 
much as possible. A variance reduction technique is derived here; we make 
successive time differences of the functionals and employ the non-anticipating 
property of SDEs. 

Other factors affecting the calculations include the cutoff 6, the cutoff function.f, 
and the number N (= 856) of the vortex blobs used. In order to exhibit the 
accuracy of the schemes, the cutoffs are chosen so that their effects are minimal, 
and, instead of being randomly distributed, the initial vortex blobs are placed on a 
uniform grid, as suggested by Roberts [33]. 

Our numerical results show that the sampling errors for the usual Monte Carlo 
estimate in Euler’s method are roughly of the same order as the time discretization 
errors but dominate in the other two. As expected, this estimate cannot show the 
high accuracy of Methods A and B for such relatively small sample (N = 856) 
without efficient variance reduction. The variance reduction technique mentioned 
above produces for Method A errors of the same order as those by a usual Monte 
Carlo estimate and exhibits clearly the first-order accuracy of the method. However, 
this technique reduces drastically errors for both Methods A and B. Numerical 
evidence shows that either Method A or B is, practically a second-order scheme for 
the Navier-Stokes equations as long as an efficient variance reduction technique is 
available. 

The first random vortex method was conceived by Chorin and used to study a 
slightly viscous flow with boundary conditions [13]. This method consists of 
solving Euler’s equations by a vortex method and sampling Gaussian random 
variables to model the diffusion equation. It is therefore a fractional step type 
method. The legitimacy of using methods of this kind has been studied by several 
authors, e.g., [ll, 17, 361. A vortex method for solving Euler’s equations can be 
briefly described as follows. In a vortex method, the initial vorticity field is 
partioned to a sum of vortex blobs called vortices; and Euler’s equations are 
replaced by a finite set of ordinary differential equations according to which the 
vortices evolve. Therefore both the vortex method and the random vortex method 
are grid free, i.e., no spatial discretization is needed to advance the vortex blobs. 

The main difference between Chorin’s method and our Methods A and B lies in 
that at each time step the velocity field in the latter case is set to be interlaced with 
the purely random field (the Wiener process); that is, intermediate random interac- 
tions are introduced. These intermediate effects complicate the numerical diffusion 
process, requiring our schemes to use more information about the Wiener process. 
This might be crucial to the success of designing high accuracy random vortex 
methods. A theoretical study along this direction is still lacking at present. 

The random vortex method has been successful in the study of several physical 
phenomena, for example, turbulent combustion [20, 35). However, it should be 
noted that the very physical vortices in the vortex method, except initially, do not 
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serve in a similar way as in the random vortex method. Unlike solving Euler’s 
equations one cannot, for the Navier-Stokes equations, keep track of the paths of 
physical vortices by solving a system of ordinary differential equations due to the 
existence of a viscous term. In a random vortex method, each vortex carries a 
certain weight determined by the initial vorticity field, and their motion generates at 
each time step a probability distribution; the velocity field in turn is determined via 
the distribution and the weights through the Biot-Savart law. In short, the random 
vortex method is a method that provides an approximation to the velocity field 
through the distribution of random vortices, each of them being specified by a 
quadruple: its position, its weight, the cutoff, and the cutoff function. 

It is appropriate here for us to mention some fundamental aspects of the vortex 
method and its development. The success of the vortex method consists in the use 
of vortex blobs, suggested by Chorin [ 131. The early study, by Chorin and Bernard 
[16], of a vortex method without using vortex blobs--called the point vortex 
method--showed that the method is unstable in predicting rollup of nonuniform 
vortex sheets. In a vortex method, the velocity is determined by integrating the 
vorticity against a kernel with singularity at the origin. The above instability is thus 
due to when two vortex blobs come very close to each other. The idea of using 
vortex blobs is therefore to cut off this unphysical singularity. For this purpose, a 
class of so-called cutoff functions was introduced by Hald, which enabled him to 
give the first convergence proof of vortex method [23,24]. Subsequently, Beale and 
Majda [7] designed vortex methods of arbitrary accuracy by careful choice of 
cutoff functions. For other aspects of the vortex method, especially in three 
dimensions, we refer to Beale and Majda [S, 63, Leonard [28], Greengard [22], 
and Anderson and Greengard [2]. Of special interest are Chorin [ 14. IS], where 
the idea of the random vortex sheet is introduced, and Anderson [l] who treats 
flows of slightly variable density. 

This paper is organized as follows. In the next section, we derive the random 
vortex methods in three steps: random equations are introduced, the use of cutoff 
function is explained, and the fully discretized random vortex algorithms are 
presented. Then a section is devoted to describing the model problem and the 
variance reduction technique. Numerical results are then presented and conclusions 
are drawn. In the Appendix, we briefly describe SDEs and the involved numerical 
schemes A, and B,. 

2. RANDOM VORTEX METHODS 

We begin by showing how a stochastic equation is related to the fluid equations, 
and give a heuristic discussion on their connection. Consider the two-dimensional 
Navier-Stokes equations for incompressible fluids with constant density p, 

ut+(u~V)u= -$vp+“Llu, 

v.u=o, 
(2.1) 

(2.2) 
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where u = u(~,x) is the velocity, p =~(t, x) is the pressure, and the constant Y is the 
kinematic viscosity. By introducing the vorticity 

Q4L x) = (dlU2 - &u1)(4 xh 

where u = (ur, u,), we can rewrite Eqs. (2.1) and (2.2) into a single equation 

0, + (u .V) w = vdo. (2.3) 

This equation connects the Navier-Stokes equations with SDEs. Suppose first that 
the initial vorticity oO(x) =0(0,x) is a probability density on R2; the general case 
will be discussed later. Then it follows from (2.2) that (2.3) is the Kolmogorov 
forward equation for the SDE [3,21] 

dY=u(t,Y(t))dt+fidW,, t > 0, (2.4) 

where W, is a normalized Wiener process. The random variable Y(t) has the 
distribution 

for any Bore1 set A in R2. For the sake of completeness, some properties of SDEs 
and of the Wiener process, and the involved schemes A, and B, are briefly 
described in the Appendix. 

The connection between (2.3) and (2.4) reveals that the SDE models the 
convection and diffusion. To take a close look at this, we consider convection and 
diffusion separately. In the first, we let v =O, then (2.3) becomes Euler’s equations 
and (2.4) is equivalent to their characteristic formulation. In the second, we set 
u c 0 and consider oO(x) = 6(x), the Dirac delta function. Then the solution to (2.3) 
is the diffusion kernel 

o(r, x) = &exP( -g). 

This is exactly the probability density of the solution to (2,4kY(r)=fiW,. In 
other words, if initially a vortex is located at the origin, at a later time’t it will 
distribute as the Gaussian random variable fiW,. Therefore, Eq. (2.4) may be 
regarded as combining the effect to advance vortices in velocity u and that to 
redistribute them in a Gaussian manner. This is the basic idea of random vortex 
methods. 

Next we look for a probabilistic representation of the velocity field. Since the flow 
is incompressible, we can introduce a stream function y5 = $(t, x) such that 

-f&$(4 x) = u,(c x), a,$(4 x) = uz(t, x). (2.5) 
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Then, 

o=d,U,-a,u,=a:~+a:IC/=A*, (2.6) 

which is Poisson’s equation for $. Assume that o(t, .) decays rapidly at infinity; the 
solution of Eq. (2.6) is then given by 

i(r,x)=(c*w)(t,X)=Zt;;jlog(lx-yl)m(l,y)dy, (2.7) 

where * denotes convolution, and 

is the fundamental solution of the Laplace operator. Setting 

K,(x)= (-&G)(x), &(x1 = (d,G)(x), 

we have, from (2.7) and (2.9), that 

K=K(x) being the velocity kernel, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Equation (2.10) is the Biot-Savart law for the velocity field u. We can further write 
this equation in Lagrangian form to discover an explicit probabilistic representation 
for u. Actually, for any flow property, an expression of this kind is crucial for the 
random vortex method. Define 

U(f, a)ru(t, x(t, a)); 

then 

= 
s 

K(x(t, a) -y(f, IT’)) w(f, a’) da’ 

= s K(x(f, a) - y(f, a’,) @,(u’), (2.12) 
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or, in Eulerian terms, 
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u(t, x) = 1 K(x - y(t, a’)) &‘,(a’). (2.13) 

The second equality in (2.12) follows from the incompressibility of the fluid. Here 
P, is the probability measure induced by the random variable Y = Y(r, .)--the 
solution of Eq. (2.4): for a Bore1 subset A in R’, 

P,(A)=P(Y(t)EA)=j- m(t,y)dy, t > 0. (2.14) 
4 

Let EY denote the corresponding expectation, then (2.14) states simply that the 
velocity field u(t, .) is the expectation of K( . - Y(r)). We have explicitly that 

u(t, x) = E,[K(x -Y(t))]. (2.15) 

Thus the velocity field u(t, .) is completely determined by the distribution of Y(t). 
This connection enables us to solve the Navier-Stokes equations (2.1 t(2.2) by 
solving the SDE (2.4). Equations (2.4) and (2.15) constitute the basis for our study 
of random vortex methods. 

Cutoff Functions. To approximate the velocity field, great care must be taken to 
avoid the singularity of the kernel K = K(x) at the origin. For this purpose, we need 
to introduce a class of so-called cutoff functions. Let @ = a(x) be rapidly decreasing 
C”’ function with integral one: JR2 Q(x) dx = 1, and put 

@a(x) = c2 @(x/b). 

Then for every function h E L”(R’) (1 dp d ‘KI)), we have h*@ E C”, and 

hR(x) = (h*@,)(x) -+ h(x), as 6 + 0, in Lp(R2) 

(see [ 193). We call ub = u*Qp, the regularization (or mollification) of u, 6 the cutoff 
for the function Qa, and the family {ad} the set of cutoff functions. 

We apply this mollification to the velocity kernel K, beginning with the stream 
function $. Since ~(t, .) is assumed to decay rapidly at infinity, the stream function 
$(t, .) = (G*w)(t, .) is in L’ n L”. Suppose that GJx) = (G*Q8)(x) exists for every 
sufficiently small 6, then 

(Gdwo)(t, x) = (G*@&oJ = (G*w)*@, + @(I, x), (2.16) 

in the L’ n L” sense as 6 tends to 0. Furthermore, we have 

dG,(x) = @a(x), (2.17) 
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since G = G(x) (see (2.8)) is the fundamental solution of the Laplace operator; and 
therefore we have according to (2.6) 

o,(t, x) = d(G,*w) = (@gw)(t, x). (2.18) 

Now, as in (2.9) we define K, = (K,, , K,,) by 

Kdl = -&G,, K,,=S,Ga. 

Then an approximation of the velocity field is given by 

u,,(t, x)= -J2(Ggiw)= (K6,*co)(t, x), 

usz( t, x) = a,( G,*w) = ( Kb2*co)(t, x). 

Therefore, we have obtained a complete set of cutoff equations. In summary, let u6 
denote (uCiI, u,,); then we are solving Eqs. (2.4), (2.13), and (2.14) with u replaced 
by u6 and K replaced by K,. That is, we are considering 

dY=u,(t, Y(t))dt+vhidW,, t 2 0, (2.19) 

while the probability density o of Y(t) satisfies 

co,(t, x) + (up V) o(t, x) = vdw(t, x) (2.20) 

and 

u,(h c) = s K,(x(t, a) - y(r, CT’)) dP,(a’) (2.21) 

or, in analogy with (2.15) 

udtr x) = E,CK,(x - Y(r))] (2.22) 

with (2.14) unchanged. Note that the cutoff velocity field u,(t, x) satisfies the 
incompressibility condition (2.2) automatically by its definition; and (2.21) can be 
derived in exactly the same way as for (2.12). Similarly, (2.18) yields a probabilistic 
expression for the vorticity field; 

(fl,(L a) = j @a(~(4 cl- y(t, 0’)) dP,(a’), (2.23) 

or 

o,(t, x) = &C@,(x - Y(rJ)l. (2.24) 

Next we will derive random vortex methods based on Eqs. (2.19) and (2.22). 
Above all, we need an explicit kernel K,. If we choose @ to be radially symmetric, it 
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follows from (2.17) that G6 is also radially symmetric. Then, remembering the 
definition of K,, we have, by integrating (2.17), 

K,(x)=(-~,,d,)Gb(~)=f~(lxl)K(x). (2.25) 

The similar idea was used by Beale and Majda [7] to design high order accuracy 
cutoff functions for the vortex method. In Table I, we list several commonly used 
function pairs f6, CO derived by Beale and Majda, together with some other cutoff 

TABLE I 

Commonly Used Cutoff Functions 

Chorin [ 131: 

Milmazzo and Saffman [31]: 

Hald [24]: 

.fdr) = 1. lf r> 6, 

= r/6, lf rc6; 

Jdr) = 1. if r>6, 

= r=/6=, If r<6; 

G(r)=& 280(1-r14-,~0(L-r)S+~(l-r)6 
[ 1 , 

7 
&(r)=& 

[ 
56-630~+1~~~~-1680~+864~-175~ ifr$d, 1 =I ifr>b; 

Kuhawara and Takami [27]: 

@(r)=kC’, f&(r) = 1 -,-S’a’; 

Beale and Majda [7]: 
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functions, including those used by Chorin [ 131, Hald [24], Kuwahara and Takami 
[27], and Milinazzo and Saffman [3 11. 

Discretized Methods. We can now derive the random vortex methods which are 
used in actual computation. Recall that the equations we are solving are (2.19) and 
(2.21). However, our approximation will be no longer restricted to the case where 
o0 is a probability density. First we write in a product form 

we(x) = K(X) no(x) 

so that ~(0, x) = n,(x) is a probability density. Then we sample N independent 
random variables Y:O), each with weight K, = K(Y~O’), 1 <j,< N, according to the 
initial distribution no(.) = n(0, .). Each pair (Y,, K,) moving with fixed cutoffs 
(6, Qs) is called a vortex blob, or simply vortex. 

Next we define an approximation to the Y”“-velocity field, 

ii:“‘(x) =; f K,(x - Y;“‘) h;; 
J=l 

(2.26) 

this can be regarded as a Monte Carlo estimate for the integral (2.21). Other 
estimates are possible, but the one in (2.26) is the simplest. Although the samples 
{YJn)} are not independent due to their mutual interaction, the law of large 
numbers justifies the estimate because they are identically distributed [8]. From 
(2.23) or (2.24), an approximation for the vorticity is given by 

w=; f @,(x-y;“‘)K,. 
,=I 

(2.27) 

As we shall see, the expressions (2.26), (2.27) are approximations to the integrals 
(2.22) and (2.24) following the vortex blobs, provided that uniform grids are used 
initially. Following the notations used in the Appendix, we have immediately 

Euler’s Method. Yen+ ‘) = YJ”) + @ I?“‘) + At ti$“(Yj”‘). Because of its 
simplicity, this scheme/has been used by Chorin in the study of slightly viscous 
flows [13] and of boundary layer approximations [14]. It is also one of the 
simplest schemes of fractional step type and of Runge-Kutta type. For more 
complicated schemes, we define the approximation to the PC”‘-velocity field, 

iiF’(x i K,(x-P;“‘) K,, 

/=I 

and the approximation to the Q’“‘-velocity field, 

(2.28) 

(2.29) 
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The latter approximation will serve as an intermediate interaction between the 
velocity field and the random field W, with an increment of the Wiener process 
entering Q . (n’ Looking at Methods A,, and B, in the Appendix, we define the 
following analogous schemes for Eqs. (2.19) and (2.21): 

Method A. 

Method B. 

pc~l=ylll’+ Qrg$(YW’) 
I J / ’ 

Q;n’ = Y;,) + +dtijv’(Y;“‘) + &/G A;‘,‘, 

YcH+ ‘I= Y;n’+ dG I-;“‘+ 4 dt[tit’(P;“‘) + Zii$‘(Q;“‘)]. / 

Note that p in Methods A, and B, corresponds to @ in the above schemes 
since we are solving Eq. (2.19). The velocity field ug(t,, .), given by (2.21), is deter- 
mined from the flow at time t,; therefore the time dependence is raised to the 
superscript in the approximation of the velocity fields. Note also that as v tends to 
0, these schemes become the vortex method based on the midpoint rule, 

RI”’ =X’“’ + +dtfi$‘(X’“‘) 
J / I ’ 

X’” + 1) = X;n’ + drfik”‘(R;“‘), 
I 

which has been discussed by Anderson and Greengard [2] and proved to have a 
second-order accuracy by these authors. Convergence for the random vortex 
method has recently been studied by Goodman [21] and Marchioro and Pulvirenti 
[30], mainly for Euler’s method. Also of interest are Hald [25] who proved, at an 
earlier time, convergence of a simplified model problem with vorticity creation and 
Roberts [34] who proved independently the convergence of a random vortex 
method for Burgers’ equation. 

3. THE MODEL PROBLEM AND VARIANCE REDUCTION 

Consider the vorticity equation 

o,+(u-V)w=wlw, 

subject to the initial condition 

ho = Q,, lx1 G a; =O, elsewhere; 

(3.1) 

(3.2) 
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where R0 = l/(lra2) is so that w,(x), and therefore o(t, x), is a probability density. 
Due to the symmetry of the initial ~(0, x), the convective term vanishes [4]; and 
therefore Eq. (3.1) reduces to the diffusion equation: 

w;( I, x) = vdw( t, x). (3.3) 

The initial value problem (3.3) and (3.2) allows for the explicit solution 

u(t,x)= s D,(x - Y) WI(Y) a, (3.4) 
R? 

where D,(x) is the diffusion kernel. For later use, we compute the initial u0 of the 
flow. By (2.6), the radial symmetry of the initial vorticity tield implies that 
9,,(x) = rl/,,(r), r = 1.~1, and in polar coordinates, 

Id -- 
r dr 

1x1 ,<a; =o, elsewhere. 

Direct integration of this equation twice, followed by the use of the formulas in 
(2.5), gives 

g&d -XZ,Sl), if 1x1 <a, 
WAX) = 

ig&-x2, -u,), 
(3.5) 

if 1x1 >a. 

Now we consider the problem of investigating the accuracy of the methods 
derived in the previous section. It seems that the simplest and least expensive way 
to compare the accuracy of stochastic numerical schemes is to use them to estimate 
functionals which can be evaluated explicitly. This indicates the accuracy both of 
the computed velocity field and of the vortex distribution. Following [31, 331, we 
consider integrals of the form: 

&MY(t)1 =Jb>g(YMr,YMY, (3.6) 

where Y(t) is the solution of Eq. (2.4) and EY denotes the corresponding 
expectation. Integral (3.6), like the velocity field is a functional of the Wiener 
process W,. We take first g(x) = Ix/‘. Substituting (3.4) in (3.6) and performing the 
integration yields 

U(t) = $a’ + 4vr. (3.7) 

Then put g(x)=exp( - 1x12), and we have 

(3.8) 
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Since we are numerically solving an SDE (i.e., (2.19)), all the information available 
at the time t, is the set of samples Y, @). Therefore, we would Monte Carlo estimate 
the functionals considered. The simplest estimate for (3.7) or (3.8) is the usual 
estimate 

(3.9) 

An estimate of this kind can be justified, as mentioned before, by the law of large 
numbers, despite the lack of independence among the samples Yjn) due to their 
mutual interaction through the velocity field. 

Variance Reduction. A Monte Carlo estimate creates statistical error-called 
error variance due to imperfect sampling. Since the error variance for the estimate 
in (3.9) is usually proportional to l/N (see [26]), a substantial error of order l/fi 
is due to the Monte Carlo calculation. It is then clear that, in order to exhibit the 
accuracy of a numerical scheme, the error variance produced by Monte Carlo 
estimation should be made as small as possible. The method is to utilize the non- 
anticipating property of the solutions of SDEs. In view of (3.6), we form the sum 

n-l 

dY(~,))=k!W(O))+ c Cg(Y(t,+,))-g(Y(t,))l. 
k=l 

Its numerical analogy is then given by 

g 
‘LgKU+ 1 (g’k+U-g’kl), 

k=l 

(3.10) 

where glk’ =g(YlkJ), Y’k) is the numerical solution of the SDE (2.19). We further 
observe that all the schemes considered (Euler, Methods A and B) are of the form: 

y’kf ‘I= y’k’ + ,fip + dry(k). 

The non-anticipating property implies that the numerical solution Y’k) is 
independent of the newly input increment r . ‘k’ This suggests the following Taylor 
expansion for each summand in (3.10) 

g, ‘k+‘J=gjkJ+g~:~I,[~T(k~~‘+Aryl’k~~’]+dtvg~~J~,f’k)~‘r(k~~~+ . (3.11) 

Here the summation convention is adopted, and the subscript j means that the 
sample Y, is used, and subscripts with a comma denote differentiation. Hence we 
need to assume smoothness on g. For convenience, we omit the index j temporarily. 
Move the two terms on the right-hand side of (3.11) to the left and denote by 
G’k + ” the resultant expression, then 

G’kl =g’k+ ‘) eg’k’- vmg!:’ r’k).l, 

= Arg!$’ y/(k). I + Atvg!$; r(k). 1 r’k).p+ . (3.12) 
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Note the independence between gfk’ and r”‘*‘, the latter being of standard 
Gaussian distribution. Taking expectations on both sides of the first equality and 
summing the results over k from 0 on n - 1, we have immediately 

E[g(Y'"')] = E[g(Y"')] + c E[G'k'], 
k=I 

which is equivalent to 

E[g(Y’k+” )] = E[g(Y’k’)] + E[G’k’]. (3.13) 

This is a recursive relation between E[g( Ylk’)] and E[g(Ytk + ‘I)]. In this way the 
functionals to be computed are successively linked, and an estimate for each 
&‘[G’k’] can be designed, according to the first identity of (3.12), as 

(3.14) 

where, again, gjk) means that the sampling solution { Yj”‘} is used. The reason for 
using this form is then clear: the usual estimate for g(Y’“‘) is equivalent to summing 
up estimates of the same kind for g(Y’““‘)-g(Y’“‘) over k from 0 to n- 1, while 
the estimate for g(Y’“‘) constructed through Gfk’ eliminates the dominating 
sampling error due to the existence of the term m g!,k’ Pk’. ‘. More complicated 
estimates can be constructed through the use of Hermite polynomials [ 12, 291. 

4. NUMERIAL IMPLEMENTATION 

In this section we present the numerical results of performing Monte Carlo 
calculation of the two functionals considered in Section 3 (cf. (3.6b(3.8)). The 
Monte Carlo estimates employed are the usual one in (3.9) and the modified one in 
(3.13), (3.14). We consider the three methods presented in Section 2: Euler’s 
method and Methods A and B. In studying the accuracy of these schemes, we wish 
to concern ourselves only with the time discretization error but we must consider 
the random sampling error as well Therefore one aim of this section is to weigh the 
relative significance of these errors and estimate their interaction. 

Before any meanful discussion, we have to specify the following parameters and 
conditions: 

(i) the time step size (At), 
(ii) the discretization of the initial vorticity field, 
(iii) the cutoff 6 and the cutoff function&, and 
(iv) the sampling algorithm for the variables: { rJ”)> and {A:“‘). 
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To exhibit the accuracy of the numerical schemes, we use three time step sizes 
At = 0.2, 0.1, and 0.05 for Monte Carlo computation of each functional under 
consideration. As we have noted in Section 3, the time step size may also affect the 
Monte Carlo computation, and this point will be discussed further later. 

The number of vortex blobs used is actually determined by the spatial 
discretization of the support-a disk of radius u-of the initial vorticity field. Since 
we are mainly concerned with the two errors mentioned above, the initial error due 
to discretization will be minimized as follows. The radius a of the disk is chosen to 
be 0.5, and therefore the initial vorticity is given by 

WI(x) =;, 1x1 da; =o, elsewhere, 

so that the total vorticity is 1. Following Roberts [33], we will uniformly distribute 
the initial vortex blobs; thus we set Q(X) = K(X) x0(x), where rt,, = x0(x) is uniform 
over the unit square centered at the origin. The corresponding weight function 
K = K(X) is therefore identical to the initial vorticity field: ~(x)=q,(x). Next we 
partition the unit square into a lattice of sidelength & =0.03125, which is 
comparable to that used by Perlman [32] in a vortex method. The center of each 
square L, is the position of a vortex blob which carries the average weight of the 
square; 

K, = K(Y) &/area (4). 

The weights (K,} used here are somewhat different from those defined before; the 
previous ones were obtained by evaluating the weight function K= K(X) at the 
initial positions of the vortex blobs. Consequently the total weight is exact; 

X K, .area(L,) = C jL, 0) dy = j K(Y) 4. 
J J 

It should be noted, however, that only those vortex blobs with nonzero average 
weights ~~ enter the actual computation, because the others contribute nothing to 
the computed velocity fields. This explains why the number N of vortex blobs that 
we actually use is 856 instead of the number 1024 of squares. Therefore, it suffices 
to determine the initial velocity field for those vortex blobs with nonzero weights, 
from (3.5) with 8, = 4/7r, 

Furthermore, we specify the cutoff 6 and the function f&. The cutoffs serve as 
measures of the size of vortex blobs and of the interactions among them. These 
factors play a major role in determining the accuracy of a vortex method (see, e.g., 
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[ 13, 241). In the present paper, we choose 6 to be the sidelength of an initial square 
and fs to be the fourth-order kernel of Beale and Majda ([7]). We use a fourth- 
order kernel to minimize the cutoff-induced error. 

To simulate the Gaussian random variables lYjn’ and A)“‘, we recall that their 
correlation matrix is N(0, l/21,), and write 

where N\:’ and N$’ are two independent Gaussian random variables. A two-com- 
ponent Gaussian variable N = (N, , N2) may be sampled according to the following 
formulas [26]: 

N, =cos(27cU,)[ -2 log(u,)]“2, 

N, = sin(2zU,)[ -2 log(Uz)]‘.“, 

TABLE II 

Example 1, N= 856. Numerical Results of Computing f 1~)’ w(r, y) dy: for Each Scheme, Errors for the 
Usual and the Modified Monte Carlo Estimates Are Listed m Order in Exponential Form 

At Euler’s Method A Method B 

t = 1.0, Exact value = 1.330-I 

0.2000 8.267-3 9.430-3 
0.1000 4.789-3 3.580-3 
0.0500 2.574-3 2.311-3 

I = 2.0. Exact value = 1.410-I 

0.2008 1.689-2 1.764-2 
0.1000 9.938-3 9.060-3 
0.0500 1556-3 4.521-3 

I = 3.0, Exact Value = 1.490-I 

0.2000 2.670-2 2.564-2 - 3.256-4 -5.701-4 1.083-4 8.836-6 
0.1000 1.290-2 1.316-2 - 4.989-4 - 3.660-4 - 3.021-3 - 1.395-4 
0.0500 - I .840-3 6.698-3 - 5.043-3 - 2.573-4 - 5.457-3 - 7.560-6 

[ = 4.0. Exact value = I 570-I 

0.2000 3.457-2 3.254-2 
0.1000 1.506-2 1.712-2 
0.0500 6.23 l-3 8.872-3 

- 1.424-3 - 2.684-4 - 1.475-4 2.196-5 
- 6.035-4 - 2.405-4 - 1.573-3 -9.270-5 

1.223-4 - 1.409-4 - 1.326-3 -6.156-5 

1.459-3 - 5.797-4 - 1.227-3 - 6603-5 
5.673-4 - 3.057-4 - 5.726-4 -6.798-5 

-3.135-3 - 2.330-4 -4.231-3 -4.898-5 

8.940-4 -8.191-4 2.073-3 - 1.719-4 
- 1.969-3 -4.138-4 - 3.721-3 7.749-5 
- 2.789-3 - 1.924-4 - 5.931-3 - 5.898-5 
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where U, and U, are two independent (scalar) uniform random variables over the 
unit interval [0, 11. The above sampling procedure is done for each vortex blob j at 
each time step (n) independently, Finally we choose the viscosity v = 0.002, within 
the range of a typical slightly viscous flow. 

Now we analyze the numerical results. For each functional, we list the computed 
results in four tables at the times t = 1, 2, 3, and 4 (see Tables II and III). The total 
time interval (T= 4) is comparable to the period of the corresponding nonviscous 
flow [32]. For each scheme, there are two subcolumns, containing results obtained 
by the usual estimate and the modified estimate, respectively. We note that for 
Euler’s method, the errors produced by these two estimates are about of the same 
order, and particularly the modified one exhibits clearly the first-order accuracy of 
this method. 

The situation for Methods A and B is quite different from that for Euler’s 
method. First we observe that the errors are drastically reduced if the modified 
estimate is used. Let us focus on the ratios of the errors for the modified estimate to 
the errors for the usual estimate. Then we find that the absolute values of the ratios 
for Method A are about from 0.1 to 1, while for Method B the values are about 

TABLE III 

Example 2, N = 856. Numerical Results of Computing 5 e mlY1’ u(r, y) dy: for Each Scheme, Errors for the 
Usual and the Modified Monte Carlo Esttmates Are Listed in Order in Exponential Form 

dl Euler’s 

t = 1.0, Exact value = 8.7861-l 

Method A Method B 

0.2000 - 5.382-3 - 7.909-3 2.722-3 2.008-4 1.564-3 -4.661-5 
0.1000 - 2.496-3 - 3.842-3 1.573-3 2.035-4 2 752-3 4.542-5 
0.0500 - 7.046-4 - 1.960-3 1.355-3 1.006-4 2.526-3 9.954-6 

I = 2.0, Exact value = 8.7251-l 

0.2000 - 1.246-2 - 1.456-2 2.632-3 4.309-4 -2.500-3 -4.172-6 
0.1000 -6.807-3 -7.533-3 9.334-4 2.111-4 1.814-3 -2.331-5 
0.0500 1.023-4 - 3.774-3 4.010-3 1.722-4 4.760-3 - 3.219-5 

I = 3.0, Exact value = 8.6649-l 

0.2000 - 2.025-2 -2.081-2 1.047-3 3.826-4 1.235-3 - 9.602-5 
0.1000 -8.937-3 - 1.075-2 1.983-3 2 765-4 3.720-3 1.597-5 
0.0500 -4.585-4 - 5.542-3 5.223-3 1.639-4 - 5.645-3 - 1.494-4 

I = 4.0, Exact value = 8.6055-l 

0.2000 - 2.620-2 - 2.600-2 5.181-4 5.488-4 -3.717-4 9.692-5 
0.1000 - 1.078-2 - 1.382-2 2.967-3 2.881-4 4.055-3 -2.121-4 
0.0500 -4.171-3 - 7.295-3 3.167-3 4.804-5 6.000-3 - 1.868-4 
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from 0.01 to 0.3. However, we also observe that there is no clear dependence of the 
reduced errors on the time step sizes; this indicates the existence of strong interac- 
tions between the time discretization errors and the random sampling errors. As we 
have noted, the fact that the time step size enters into both the local truncation 
errors and the Monte Carlo modified estimate complicates the mutual interactions. 

Nevertheless, in any case, the numerical results reveal that both Method A and 
Method B are more accurate than Euler’s method by one power of the time step 
size. The seeming superiority of Method B can be understood as follows. Since the 
accuracy of Method B, has been proved to be the order 1.5 in the L, sense, it is 
very likely that Method B would exhibit a second-order accuracy in the weak sense 
due to the non-anticipating property of SDEs. On the other hand, Method A, 
accumulates local truncation errors in an invisible way and possibly does not 
produce these errors with small uniform bounds, though the order of the local trun- 
cation error at each time step is three in the weak sense. We used the word 
“invisible” because of the lack of (accurate) estimation of the accumulated error. 
We do not observe, in the present analysis, the dependence of errors on the 
viscosity. However, we expect that for small viscosity, the random effects are small 
as well, and our schemes would produce even better results. Finally, we would like 
to mention on this connection that the viscosity (v = 0.002) used in this study is 
slightly larger than those used elsewhere (e.g., [31, 331). 

5. CONCLUDING REMARKS 

The vorticity in two-dimensional incompressible flow evolves under a convection 
term and a diffusion term, exactly corresponding to the drift vector and Brownian 
part of a diffusion process. Therefore, it is reasonable that one can derive accurate 
numerical methods for solving the Navier-Stokes equations from those known for 
SDEs. This has been verified in the present article (Methods A and B). However, as 
we have noted, further study in this direction should include both the accuracy of 
numerical schemes and variance reduction techniques. 

Of equal interest is the generalization of the results to three dimensions, where an 
immediate hindrance is encountered: the emergence of vortex stretching. This 
important physics is not attached to a diffusion process, and therefore to an SDE, 
and should be treated separately. Moreover, since the vorticity in three dimensions 
is no longer scalar, the analogy with what we have done is not clear, there may be a 
stochastic calculus which can model the physics of vortex stretching. However, 
Esposito and Pulvirenti [ 181 have more or less extended the three-dimensional 
convergence results of Beale and Majda [S] to the stochastic case, using a splitting 
algorithm. 
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APPENDIX 

SDE and Numerical Methods. The simplest d-dimensional SDE is given by 

dY=f(t,Y)dt+pdW,, 

where f = f(t, x) is called the drift vector and p 2 0 the diffusion coefficient. 
W, = W(t, .) is called a Wiener process or Brownian motion. A Wiener process is a 
Gaussian stochastic process with independent increments starting at the origin. 
More precisely, W, satisfies 

(i) W,=O, 
(ii) W, - W,, s < t, is of Gaussian distribution N(0, (t-s) I,), 

(iii) W, is independent of W, - W,, s < t. 

It can be shown that a Brownian path is nowhere differentiable. Therefore, a 
solution of the SDE should be interpreted in.the sense of integration, 

Y(t)=Y(0)+srf(s, Y(s)) ds+pW,. 
0 

From the property of the Wiener process, it is conceivable that the solution to an 
SDE is also independent of later increments of the Wiener process, which is called 
the nonanticipating property of the solution. 

Numerical Methods. Due to the existence of a Wiener process, it is not clear 
how to extend the techniques for ODES to SDEs. In [9, lo], we proposed two 
methods of Runge-Kutta type for numerical integration of SDEs. Let At denote the 
time step and set t,* = t, + +At, we have 

Method A,: 

PCn’=Y’“‘+jAtf(t,,, Y@)), 

Q’“’ = Y(“’ + ;Atf(t,,Y”“) + @t pl?“‘, 

Y’“+“=Y’“‘+&@~‘+$At[f(t,*,P’“‘)+f(t;,Q’”’)]; 

Method B,: 

p’“’ = y’“’ + +Atf(t II, y’“‘), 

Q’n’= Y(“’ + +Atf(t,, Y(“) + $ fi PA’“‘, 

Y’n+“= Y(“‘+ fipI-‘“I+ fAt[f(t,*, P’“‘)+ 2f(t,r, Q’“‘)]. 

Pc”’ is a Gaussian random variable of N(0, Id) and A’“) of N(0, +I,). Method B, is 
proven to have the order 1.5 in the L, sense while Method A, has local truncation 
errors of order 3 in the weak sense. Note that as p tends to 0, these schemes become 
the Runge-Kutta method based on the midpoint rule for ODES. 
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